Uses of Information Theory in Medical Imaging

Norbert Schuff, Ph.D.

Center for Imaging of Neurodegenerative Diseases

Norbert.schuff@ucsf.edu

With contributions from Dr. Wang Zhang

Topics

- Measurement of information
- Image registration using information theory
- III. Imaging feature selection using information theory
- IV. Image classification based on information theoretic measures

Measurement & Information

Objective

Learn how to quantify information

Information and Uncertainty

Random Generator

Which char comes next?

Decrease in Uncertainty

→ ABACCACB

$$\log(1/3) = -\log(3)$$

→ 011000101

1

$$\log(1/2) = -\log(2)$$

Both combined:

$$-\log(3) - \log(2) = -\log(6)$$

Note, we assumed each symbol is likely to appear at equal chance

More On Uncertainty

Random
Generator
Of M Symbols

Which one comes next?

Decrease in Uncertainty

$$\log(1/M) = -\log(p)$$

Some symbols may appear more likely than others

$$-p_i \log_2(p_i)$$

Many:
$$H_{Shannon} = -\sum_{i} p_{i} \log_{2}(p_{i}); \dots \sum_{i} p_{i} = 1$$

Example: Entropy Of mRNA

...ACGTAACACCGCACCTG

$$p_A = \frac{1}{2}; p_C = \frac{1}{4}; p_G = \frac{1}{8}; p_T = \frac{1}{8}$$

$$Bin: -\log_2(p_i): p_A = 1; p_C = 2; p_G = 3; p_T = 3$$

$$H = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = 1.75$$
 Bits per symbol

Concept Of Entropy

Shannon Entropy formulated by Claude Shannon

- American mathematician
- •Founded information theory with one landmark paper in 1948
- Worked with Alan Turin on cryptography during WWII

Claude Shannon 1916-2001

History of Entropy

- •1854 Rudolf Clausius, German physicist, developed theory of heat
- •1876 Williard Gibbs, American physicist, used it for theory of energy
- •1877 Ludwig Boltzmann, Austrian physicist, formulated theory of thermodynamics
- •1879 Gibbs re-formulated entropy in terms of statistical mechanics
- •1948 Shannon

Three Interpretations of Entropy

- The uncertainty in the outcome of an event
 - Systems with one common event have less entropy than systems with various comment events.
- The amount of information an event provides
 - An infrequently occurring event provides more information.
 i.e. has higher entropy, than a frequently occurring event
- The dispersion in the probability distribution
 - An uniform image has a less disperse histogram and thus lower entropy than a heterogeneous image.

Generalized Entropy

 The following generating function can be used as an abstract definition of entropy:

$$H(P) = h \left(\frac{\sum_{i=1}^{M} v_i \cdot \varphi_1(p_i)}{\sum_{i=1}^{M} v_i \cdot \varphi_2(p_i)} \right)$$

- Various definitions of these parameters provide different definitions of entropy.
 - Found over 20 definitions of entropy

Various Formulations Of Entropy

Names	h(x)	$\varphi_1(x)$	$\varphi_2(x)$	v_i
Shannon	x	$-x \log x$	x	v
Renyi	$(1-r)^{-1}\log x$	x^{r}	x	v
Aczel	x	$-x^r \log x$	x^r	v
Aczel	$(s-r)^{-1}\log x$	x^r	x^s	v
Aczel	$(1/s) \arctan x$	$x^r \sin(s \log x)$	$x^r \cos(s \log x)$	v
Varma	$(m-r)^{-1}\log x$	x^{r-m+1}	x	v
Varma	$(m(m-r))^{-1}\log x$	$x^{r/m}$	x	v
Kapur	$(1-t)^{-1}\log x$	x^{t+s-1}	x^s	v
Hadra	$(1-s)^{-1}(x-1)$	x^s	x	v
Arimoto	$(t-1)^{-1}(x^t-1)$	$x^{1/t}$	x	v
Sharma	$(1-s)^{-1}(e^x-1)$	$(s-1)x\log x$	x	v
Sharma	$(1-s)^{-1}(x^{\frac{s-1}{r-1}}-1)$	x^r	x	v

Various Formulations Of Entropy II

Names	h(x)	$\varphi_1(x)$	$\varphi_2(x)$	v_i
Taneja	x	$-x^r \log x$	x	v
Sharma	$ (s-r)^{-1}x $ $ (\sin s)^{-1}x $	$x^r - x^s$	x	v
Sharma		$-x^r \sin(s \log x)$	x	v
Ferreri	$\left(1 + \frac{1}{\lambda}\right) \log(1 + \lambda) - \frac{x}{\lambda}$	$(1 + \lambda x)\log(1 + \lambda x)$	x	v
Sant'Anna	x	$-x\log\left(\frac{\sin(sx)}{2\sin(s/2)}\right)$	x	v
Sant'Anna	x	$-\frac{\sin(xs)}{2\sin(s/2)}\log\left(\frac{\sin(sx)}{2\sin(s/2)}\right)$	x	v
Picard	x	$-x\log x$	x	w_i
Picard	x	$-\log x$	1	v_i
Picard	$(1-r)^{-1}\log x$	x^{r-1}	1	v_i
Picard	$(1-s)^{-1}(e^x-1)$	$(s-1)\log x$	1	v_i
Picard	$(1-s)^{-1}(x^{\frac{r-1}{s-1}}-1)$	x^{r-1}	1	v_i

Entropy In Medical Imaging

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Entropy Of Noisy Images

Signal-to-Noise Level

SNR=20

SNR=2

SNR=0.2

Entropy

Decreasing SNR Levels

Image Registration Using Information Theory

Objective

Learn how to use Information Theory for imaging registration and similar procedures

Image Registration

- Define a transform T that maps one image onto another image such that some measure of overlap is maximized (Colin's lecture).
 - Discuss information theory as means for generating measures to be maximized over sets of transforms

Entropy In Image Registration

- Define estimate of joint probability distribution of images:
 - 2-D histogram where each axis designates the number of possible intensity values in corresponding image
 - each histogram cell is incremented each time a pair (I_1(x,y), I_2(x,y)) occurs in the pair of images ("co-occurrence")
 - if images are perfectly aligned then the histogram is highly focused; as the images become mis-aligned the dispersion grows
 - recall one interpretation of entropy is as a measure of histogram dispersion

Use Of Entropy for Image Registration

Joint entropy (entropy of 2-D histogram):

$$H(X,Y) = -\sum_{x_i \in X, y_i \in Y} p(x_i, y_i) \cdot \log_2[p(x_i, y_i)]$$

- H(X,Y)=H(X)+H(Y) only if X and Y are completely independent.
- Image registration can be guided by minimizing joint entropy H(X,Y), i.e. dispersion in the joint histogram for images is minimized

Example

Joint Entropy of 2-D Histogram for rotation of image with respect to itself of 0, 2, 5, and 10 degrees

Alternative: Conditional Entropy

 Assume we know X then we seek the remaining entropy of Y

$$= -\sum_{x_i \in X} p(x_i) \sum_{y_i \in Y} p(y_i \mid x_i) \cdot \log[p(y_i \mid x_i)]$$

$$= -\sum_{x_i \in X, y_i \in Y} p(x_i, y_i) \log[p(y_i | x_i)]$$

$$= -\sum_{x_i \in X, y_i \in Y} p(x_i, y_i) \log \left[\frac{p(y_i, x_i)}{p(x_i)} \right]$$

Use Of Mutual Information for Image Registration

- Recall definition(s):
 - - amount by which uncertainty of X is reduced if Y is known.
 - - maximizing I(X,Y) is equivalent to minimizing joint entropy H(X,Y)

- MI works better than simply joint entropy in regions with low contrast where there will be high joint entropy but this is offset by high individual entropies as well - so the overall mutual information will be low
- Mutual information is maximized for registered images

Formulation Of Mutual Information In Terms Of Entropy

$$I(X,Y) = \sum_{x_i \in X, y_i \in Y} p(x_i, y_i) \cdot \log \left(\frac{p(x_i, y_i)}{p(x_i) p(y_i)} \right)$$

- Measures the dependence of the two distributions
- Is related to relative entropy (will be discussed next)
- In image registration I(X,Y) is maximized when the images are aligned
- In feature selection choose the features that minimize I(X,Y) to ensure they are not related.

Properties of Mutual Information

- MI is symmetric: I(X,Y) = I(Y,X)
- I(X,X) = H(X)
- I(X,Y) <= H(X)

- Information each image contains about the other image cannot be greater than the total information in each image.
- I(X,Y) >= 0
 - Cannot increase uncertainty in X by knowing Y
- I(X,Y) = 0 only if X and Y are independent

Processing Flow for Image Registration Using M.I.

Measurement Of Similarity Between Distributions

 Question: How close (in bits) is a distribution X to a model distribution Ω?

$$D(X \parallel \Omega)_{KL} = \sum_{x_i \in \Omega} p(x_i) \cdot \log \left(\frac{p(x_i)}{q(x_i)} \right)$$

Kullback-Leibler Divergence

- $D_{KL} = 0$ only if X and Ω are identical; otherwise $D_{KL} > 0$
- $D_{KL}(X||\Omega)$ is NOT equal to $D_{KL}(\Omega||X)$
- Symmetrical Form $sD(X \parallel \Omega)_{sKL} = \frac{1}{2} \left(D(X \parallel \Omega) + D(\Omega \parallel X) \right)$

Uses Of The Symmetrical KL

How much more noisy is image A compared to image B?

sKL distance B from A

Uses Of The Symmetrical KL

Detect outliers in a image series

Test similarity between #1 as reference and rest based on Brain mask of #1

Series Number

Image Feature Selection Using Information Theory

Objective

Learn how to use information theory for defining imaging features

Mutual Information based Feature Selection Method

- We test the ability to separate two classes (features).
- Let X be the feature vector, e.g. cooccurances of intensities
- Y is the classification, e.g. particular intensities
- How to maximize the separability of the classification?

Mutual Information based Feature Selection Method

- M.I. tests a feature's ability to separate two classes.
 - Based on definition 3) for M.I.

$$I(X,Y) = \sum_{x_i \in X} \sum_{y_i \in Y} p(x_i, y_i) \cdot \log \left(\frac{p(x_i, y_i)}{p(x_i) p(y_i)} \right)$$

- Here X is the feature vector and Y is the classification
 - Note that X is continuous while Y is discrete
- By maximizing the M.I. We maximize the separability of the feature
 - Note this method only tests each feature individually

Joint Mutual Information based Feature Selection Method

 Joint M.I. tests a feature's independence from all other features:

$$I(X_1, X_2, ..., X_N; Y) = \sum_{k=1,N} I(X_k; Y | X_{k-1}, X_{k-2}, ..., X_1)$$

- Two implementations proposed:
 - 1) Compute all individual M.I.s and sort from high to low
 - 2) Test the joint M.I of current feature while keeping all others
 - Keep the features with the lowest JMI (implies independence)
 - Implement by selecting features that maximize:

$$I(X_{j},Y) - \beta \cdot \sum_{k} I(X_{k},X_{j})$$

Mutual Information Feature Selection Implementation Issue

- M.I tests are very sensitive to the number of bins used for the histograms
- Two methods used:
 - Fixed Bin Number (100)
 - Variable bin number based on Gaussianity of data

$$M_{bins} = \log N + 1 + \log(1 + \kappa \cdot \sqrt{N/6})$$

 where N is the number of points and k is the Kurtosis

$$\kappa = \frac{1}{\sigma^4 \sqrt{24N}} \cdot \sum_{k=1,N} (x_k - \overline{x})^4 - \sqrt{\frac{3N}{8}}$$

Image Classification Based On Information Theoretic Measures

Objective

Learn how to use information theory for imaging classification

Learn how to quantify image complexity

Complexity In Medical Imaging

Complexity

- •Many <u>strongly</u> <u>interacting</u> components introduce an inherent element of uncertainty into observation of a complex system
- •In imaging, local correlations may introduce uncertainty in predicting intensity patterns
- •Complexity describes the inherent difficulty in reducing uncertainty in predicting patterns
- Need a metric to quantify information, i.e. reduce uncertainty, in the distribution of observed patterns

Proposed Measures Of Complexity

SC: statistical complexity

By Karl Young

Proposed Complexity Measures II

- Metric Entropy (H) measures number and uniformity of distributions over observed patterns (joint entropy). For example, a higher H represents increasing spatial correlations in image regions
- Statistical Complexity (SC) quantifies the information, i.e. uncertainty, contained in the distribution of observed patterns. For example, a higher SC represents an increase in locally correlated patterns.
- Excess Entropy (EE) measures convergence rate of metric entropy. A higher EE represents increase long range correlations across regions

Application: Capturing Patterns Of Cortical Thinning

Brain MRI

Histological Cut

Complexity Based Detection Of Cortical Thinning (Simulations)

H, SC, and EE automatically identify cortical thinning and do a good job at separating the groups for which the cortex was thinned from the group for which there was no thinning

Patterns Of Cortical Thinning In Dementia Using Voxelbased Morphometry

Alzheimer's Disease

Frontotemporal Dementia

Detection Of Cortical Thinning Pattern In Dementias Using Complexity Measures

RGB representation: H; EE; SC;,

More saturated red means more spatial correlations;

More saturated green means more long range spatial correlations;

More saturation of blue means more locally correlated patterns;

Simultaneous increase/decrease of H,EE,SC results in brighter/darker levels of gray

Complexity Based Classification

Summary

Metric	Description	
Entropy	Decrease in uncertainty of a random observation	
Joint entropy	Simultaneous decrease in uncertainty of multiple random observations	
Conditional entropy	Remaining uncertainty of one random observation given the probability of observations from another distribution	
Mutual Information	Mutual dependence of random distributions	
Kullback-Leibler divergence	Similarity between random distributions	
Statistical complexity	Uncertainty in the distribution of correlated patterns	
Excess entropy	Convergence of joint entropy	

Literature

986

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 8, AUGUST 2003

Mutual-Information-Based Registration of Medical Images: A Survey

Josien P. W. Pluim*, Member, IEEE, J. B. Antoine Maintz, and Max A. Viergever, Member, IEEE